If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2-18z=-6
We move all terms to the left:
z^2-18z-(-6)=0
We add all the numbers together, and all the variables
z^2-18z+6=0
a = 1; b = -18; c = +6;
Δ = b2-4ac
Δ = -182-4·1·6
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-10\sqrt{3}}{2*1}=\frac{18-10\sqrt{3}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+10\sqrt{3}}{2*1}=\frac{18+10\sqrt{3}}{2} $
| 19-1.50x=14-2.75x | | 4=w/2.2 | | 34x=034 | | 0.6x=-7.8 | | 40=3n−26 | | (x-3)(2x-10)=0 | | y=-3/2-8 | | 15x+2-3x(2x+1)=90 | | -11=-47-12b | | 1/4x=25/4 | | 2.5+9.75=3+3.25d | | x/2+3x/5=11 | | -5.2=0.4n | | $37.50=w/$3.50 | | 10+6r=15+6r | | (7x-6)°=(5x+4)° | | 7x+21=-2,x+3 | | 1/4x=61/4 | | 289=225+z^2 | | 4(x+8)-3=7x+9-2x | | 4x-45=2x+5 | | a−5.8=9.2 | | x-37=25;x | | q−25=54 | | 9=4+b | | 384=-16t^2=16t | | x^2–2x+1=0 | | 384=-16t^2=160(0)t | | 1/2b+9/4=7/2 | | 6m+12m=10 | | x+20=-120 | | (45)/(x)=5 |